Question number	Answer	Marks	Guidance
1 (a) (i)	moles KNO 3 $=1.00 / 101.1=9.89 \times 10^{-3} \mathrm{~mol}$	1	
1 (a) (ii)	$\begin{aligned} & p V=n R T \text { or } n=p V / R T \\ & \text { moles } \mathrm{O}_{2}=n=p V / R T \\ & =\left(100000 \times 1.22 \times 10^{-4}\right) /(8.31 \times 298) \\ & =4.93 \times 10^{-3} \mathrm{~mol} \end{aligned}$	1 1 1 1	
1 (b) (i)	simplest ratio of atoms of each element in a compound	1	You must learn this definition exactly.
1 (b) (ii)	K N O $45.9 / 39.1$ $16.5 / 14$ $37.6 / 16$ 1.17 1.18 2.35 1 1 2 KNO_{2}	3	If \% of O is missing then you can only get one mark.
1 (c)	$2 \mathrm{KNO}_{3} \rightarrow 2 \mathrm{KNO}_{2}+\mathrm{O}_{2}$	1	You can put multiples of an equation.
2 (a)	$\begin{aligned} & P=100000 \mathrm{~Pa} \text { and } T=298 \mathrm{~K} \\ & n=P V / \mathrm{RT} \text { or }(100000 \times 4.31) /(8.31 \times 298) \\ & n(\text { total })=174(.044) \\ & n(\mathrm{NO})=69.6 \end{aligned}$	1 1 1 1	Wrong conversion of V or incorrect conversion of P / T lose M1 + M3 If not rearranged correctly then cannot score M2 and M3 Allow student's M3 x 4/10 but must be to 3 significant figures
2 (b)	$\begin{aligned} & 3000 / 17 \\ & 176.5 \\ & 176.47 \times 46=8117.62 \end{aligned}$	1 1 1	Allow answer to 2 significant figures or more Allow 176-177 But if answer $=0.176-0.18$ (from 3/17) then allow 1 mark M1 is for the answer to (b)(i) $\times 46$. But lose this mark if $46 \div 2$ at any Stage However if $92 \div 2$ allow M1

	$\begin{aligned} & 8117.62 \times 80 / 100(=6494 \mathrm{~g}) \\ & 6494 / 1000=6.5 \\ & \text { OR } \\ & \text { If } 163 \text { mol used: } 163 \times 46=7498(1) \\ & 7498 \times 80 / 100=5998.4 \mathrm{~g} \mathrm{(1)} \\ & 6.00 \mathrm{~kg}(1) \end{aligned}$	1 1	M 2 is for $\mathrm{M} 1 \times 80 / 100$ M3 is for the answer to M2 \div 1000 to min 2 significant figures (kg)
2 (c)	$\begin{aligned} & 0.543 \times 2 / 3(=0.362) \\ & 0.362 \times 1000 / 250=1.45 \mathrm{~mol} \mathrm{dm}^{-3} \end{aligned}$	1 1	If not $\times 2 / 3 C E=0 / 2$ Allow 1.447-1.5 (mol dm ${ }^{-3}$) for 2 marks
2 (d)	NO_{2} contributes to acid rain / is an acid gas / forms $\mathrm{HNO}_{3} / \mathrm{NO}_{2}$ is toxic / photochemical smog	1	Ignore references to water, breathing problems and ozone layer. Not greenhouse gas
2 (e)	Ensure the ammonia is used up / ensure complete reaction or combustion OR Maximise the yield of nitric acid or products	1	
2 (f)	Neutralisation	1	Allow acid vs alkali or acid base reaction
3 (a)	Method 1 Mass of $\mathrm{H}_{2} \mathrm{O}=4.38-2.46=1.92 \mathrm{~g}$ Method 2 Percentage of $\mathrm{H}_{2} \mathrm{O}=44 \%$	1 1 1 A1	If there is an $A E$ in $M 1$ then can score M2 and M3 If M_{r} incorrect can only score M1 If $x=7$ with working then award 3 marks. Allow alternative methods. If M1 incorrect due to AE, M3 must be an integer.

\begin{tabular}{|c|c|c|c|}
\hline \& \(\left.\begin{array}{lcc}\mathrm{ZnSO}_{4} \& \& \mathrm{H}_{2} \mathrm{O} \\ 56 / 161.5 \& \& 18 / 44 \\ \& \& \\ (0.347 \& \& 2.444) \\ (1 \& : \& 7\end{array}\right)\) \& \begin{tabular}{l}
A1 \\
A1
\end{tabular} \& \\
\hline 3 (b) \& \[
\begin{aligned}
\& \text { Moles } \mathrm{HCl}=0.12(0) \\
\& \text { mol } \mathrm{ZnCl}_{2}=0.06(0) \mathrm{OR} 0.12 / 2 \\
\& \text { mass } \mathrm{ZnCl} 2=0.06 \times 136.4 \\
\& =8.18(4) \mathrm{g} \text { OR } 8.2 \mathrm{~g}
\end{aligned}
\] \& \begin{tabular}{l}
1 \\
1 \\
1 \\
1
\end{tabular} \& \begin{tabular}{l}
If M2 incorrect then CE and cannot score M2, M3 and M4. \\
Allow \(65.4+(2 \times 35.5)\) for 136.4 \\
Must be to 2 significant figures or more. Ignore units.
\end{tabular} \\
\hline 3 (c) \& \[
\begin{aligned}
\& \text { Moles } \mathrm{ZnCl}_{2}=10.7 / 136.4(=0.0784) \\
\& \text { OR moles } \mathrm{Zn}=0.0784 \\
\& \text { Mass } \mathrm{Zn} \text { reacting }=0.0784 \times 65.4=5.13 \mathrm{~g} \\
\& \text { \% purity of } \mathrm{Zn}=5.13 / 5.68 \times 100 \\
\& =90.2 \% \text { OR } 90.3 \%
\end{aligned}
\] \& \begin{tabular}{l}
\[
1
\] \\
1 \\
1 \\
1
\end{tabular} \& \begin{tabular}{l}
M 2 is for their \(\mathrm{M} 1 \times 65.4\) \\
M 3 is \(\mathrm{M} 2 \times 100 / 5.68\) provided \\
M 2 is \(<5.68\) \\
Allow alternative methods.
\[
\begin{aligned}
\& \text { M1 = Moles } \mathrm{ZnCl}_{2}=10.7 / 136.4 \\
\& (=0.0784)
\end{aligned}
\] \\
\(\mathrm{M} 2=\) Theoretical moles \(\mathrm{Zn}=5.68\) / 65.4 (= 0.0869)
\[
\begin{aligned}
\& M 3=M 1 \times 100 / M 2=(0.0784 \times \\
\& 100 / 0.0869)
\end{aligned}
\]
M4 = 90.2\% OR 90.3\%
\end{tabular} \\
\hline 4 (a) (i) \& \[
M_{r} \mathrm{MgO}=40.3
\]
\[
0.741 / 40.3=0.0184
\] \& 1

1 \& | If used 40 then penalise this mark but allow consequential M2 (0.0185) |
| :--- |
| 0.018 with no M_{r} shown $=0$ Penalise if not 3 sig figs in this clip only | \\

\hline 4 (a) (ii) \& $0.0184 \times 5 / 2=0.0460$ \& 1 \& | Allow 0.0459 to 0.0463 |
| :--- |
| Allow their 3(a)(i) $\times 5 / 2$ ie allow | \\

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& \& \& \begin{tabular}{l}
process mark of \(\times 5 / 2\) but insist on a correct answer being written down \\
Ignore sig figs
\end{tabular} \\
\hline 4 (b) \& \[
\begin{aligned}
\& p V=n R T \\
\& (V=0.402 \times 8.31 \times 333) / 100000 \\
\& \\
\& 0.0111 \\
\& 11.1 \mathrm{dm}^{3}
\end{aligned}
\] \& 1

1

1 \& | If rearranged incorrectly then lose M1 |
| :--- |
| If this expression correct then candidate has scored first mark |
| Ignore units |
| 3 marks for $11.1 \mathrm{dm}^{3}$ |
| However if $11.1 \mathrm{~m}^{3}$ or cm^{3} |
| allow 2 (ie penalise wrong units in final answer) |
| Ignore sig figs- but must be 2 sig figs or greater | \\

\hline 4 (c) \& $$
\begin{aligned}
& 0.0152 \times 2=0.0304 \\
& 0.938 \mathrm{~mol} \mathrm{dm}^{-3}
\end{aligned}
$$ \& \[

1
\]

\[
1

\] \& | Allow 0.03 |
| :--- |
| Allow range 0.92 - 0.94 |
| Minimum 2 sig figs |
| Allow consequential marking from 3(c)(i) |
| Ignore units even if wrong | \\

\hline
\end{tabular}

