Oxford A Level Sciences

AQA Chemistry

Question	Answer	Marks	Guidance
number			
1 (a) (i)	moles KNO 3 = 1.00/101.1 = 9.89 × 10 ⁻³ mol	1	
1 (a) (ii)	pV = nRT or $n = pV/RT$	1	
	moles $O_2 = n = pV/RT$	1	
	$= (100000 \times 1.22 \times 10^{-4}) / (8.31 \times 298)$	1	
	$= 4.93 \times 10^{-3}$ mol	1	
1 (b) (i)	simplest ratio of atoms of each element in a compound	1	You must learn this definition exactly.
1 (b) (ii)	K N O	3	If % of O is missing then you can only get one mark.
	45.9/39.1 16.5/14 37.6/16		
	1.17 1.18 2.35		
	1 1 2 KNO ₂		
1 (c)	$2KNO_3 \rightarrow 2KNO_2 + O_2$	1	You can put multiples of an equation.
2 (a)	<i>P</i> = 100 000 Pa and <i>T</i> = 298 K	1	Wrong conversion of <i>V</i> or incorrect conversion of <i>P</i> / <i>T</i> lose M1 + M3
	<i>n</i> = <i>PV</i> /R <i>T</i> or (100 000 × 4.31) / (8.31 × 298)	1	If not rearranged correctly then cannot score M2 and M3
	<i>n</i> (total) = 174(.044)	1	
	<i>n</i> (NO) = 69.6	1	Allow student's M3 x 4/10 but must be to 3 significant figures
2 (b)	3000 / 17	1	Allow answer to 2 significant figures or more
	176.5	1	Allow 176–177 But if answer = 0.176 – 0.18 (from 3/17) then allow 1 mark
	176.47 × 46 = 8117.62	1	M1 is for the answer to (b)(i) x 46. But lose this mark if 46 ÷ 2 at any Stage However if 92 ÷ 2 allow M1

AQA Chemistry

-			
	8117.62 × 80 / 100 (= 6494 g)	1	M2 is for M1 x 80/100
	6494 / 1000 = 6.5	1	M3 is for the answer to M2 ÷ 1000 to min 2 significant figures
	OR		(kg)
	If 163 mol used: 163 × 46 = 7498 (1)		
	7498 × 80 / 100 = 5998.4 g (1)		
	6.00 kg (1)		
2 (c)	0.543 × 2 / 3 (= 0.362)	1	If not x 2 / 3 CE = 0/2
	$0.362 \times 1000 / 250 = 1.45 \text{ mol dm}^{-3}$	1	Allow 1.447-1.5 (mol dm ⁻³) for 2 marks
2 (d)	NO_2 contributes to acid rain / is an acid gas / forms HNO_3 / NO_2 is toxic / photochemical smog	1	Ignore references to water, breathing problems and ozone layer. Not greenhouse gas
2 (e)	Ensure the ammonia is used up / ensure complete reaction or combustion OR	1	
	Maximise the yield of nitric acid or products		
2 (f)	Neutralisation	1	Allow acid vs alkali or acid base reaction
3 (a)	Method 1		
	Mass of $H_2O = 4.38-2.46 = 1.92 \text{ g}$	1	If there is an AE in M1 then can score M2 and M3
	ZnSO ₄ H ₂ O 2.46 / 161.5 1.92 / 18	1	If <i>M_r</i> incorrect can only score M1
	(0.0152 0.107) (1 : 7)		
	<i>x</i> = 7	1	If $x = 7$ with working then award 3 marks.
	Method 2		Allow alternative methods. If M1 incorrect due to AE, M3 must be an integer.
	Percentage of $H_2O = 44\%$	A1	

Oxford A Level Sciences

AQA Chemistry

	ZnSO ₄ H_2O 56 / 161.5 18 / 44 (0.347 2.444) (1 : 7)	A1	
	<i>x</i> = 7	A1	
3 (b)	Moles HCI = 0.12(0)	1	
	mol ZnCl ₂ = 0.06(0) OR 0.12 / 2	1	If M2 incorrect then CE and cannot score M2, M3 and M4.
	mass ZnCl2 = 0.06 × 136.4	1	Allow 65.4 + (2 × 35.5) for 136.4
	= 8.18(4) g OR 8.2 g	1	Must be to 2 significant figures or more. Ignore units.
3 (c)	Moles ZnCl ₂ = 10.7 / 136.4 (= 0.0784)	1	
	OR moles Zn = 0.0784		
	Mass Zn reacting = 0.0784 × 65.4 = 5.13 g	1	M2 is for their M1 \times 65.4
	% purity of Zn = 5.13 / 5.68 × 100	1	M3 is M2 × 100 / 5.68 provided M2 is < 5.68
	= 90.2% OR 90.3%	1	Allow alternative methods. M1 = Moles $ZnCl_2 = 10.7 / 136.4$ (= 0.0784)
			M2 = Theoretical moles Zn = 5.68 / 65.4 (= 0.0869)
			M3 = M1 × 100 / M2 = (0.0784 × 100 / 0.0869)
			M4 = 90.2% OR 90.3%
4 (a) (i)	$M_r \operatorname{MgO} = 40.3$	1	If used 40 then penalise this mark but allow consequential M2 (0.0185)
	0.741/40.3 = 0.0184	1	0.018 with no M_r shown = 0 Penalise if not 3 sig figs in this clip only
4 (a) (ii)	0.0184 × 5 / 2 = 0.0460	1	Allow 0.0459 to 0.0463 Allow their 3(a)(i) x 5/2 ie allow

AQA Chemistry

			process mark of x 5/2 but insist on a correct answer being written down Ignore sig figs
4 (b)	<i>pV=n</i> R <i>T</i> (<i>V</i> = 0.402 × 8.31 × 333) / 100 000	1	If rearranged incorrectly then lose M1 If this expression correct then candidate has scored first mark
	0.0111	1	Ignore units
	11.1 dm ³	1	3 marks for 11.1 dm ³ However if 11.1 m ³ or cm ³ allow 2 (ie penalise wrong units in final answer) Ignore sig figs- but must be 2 sig figs or greater
4 (c)	0.0152 × 2 = 0.0304	1	Allow 0.03
	0.938 mol dm ⁻³	1	Allow range 0.92 – 0.94 Minimum 2 sig figs Allow consequential marking from 3(c)(i) Ignore units even if wrong